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Letting z-m, we get 

m, = % UX%)-' &a'+ Bus% B > 0, B1> 0 

Thus, the system is unstable if b < aga/2. The variance of the velocity at z-m,z&=o, 
also depends on ac. Consequently, the nature of the scattering of dissipative forces has a 
considerable effect on the dynamics of the system. 
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THE SELFCONSISTENT PROBLEM OF THE VIBRATIONS OF AN INFINITE STRING LOADED 

WITH A MOVING POINT MASS* 

L.E. KAPLAN 

The problem of the vibrations of a homogeneous infinite string loaded 
with a point mass, moving in accordance with an unknown law of motion, is 
considered. This is one of the simplest model selfconsistent problems 
(SPs) in the dynamics of one-dimensional distributed loaded Lagrangian 
systems /l/. A mathematical formulation of the problem is given and the 
conditions for the existence and uniqueness of a global solution are 
established. An analytical method, which in many cases produces an exact 
solution, is presented. As an illustration, the displacement of a point 
mass along a vibrating string, set in motion by an impulse communicated 
to the mass, is considered. Certain effects related to the reverse 
action of the radiation of the moving point mass (braking by the 
radiation) are explained. 
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Selfconsistent problems (SPs) arise in cases in which lumped factors (point loads or 
masses, lumped electric charges, etc.) in a distributed loaded Lagrangian system are not only 
subject to the effect of the system but exert their own influence on the latter. Allowance 
for this interaction in the formulation of SPs makes it possible to explain certain effects 
which are usually ignored /2/. SPs reduce to boundary-value problems in regions with moving 
and not previously known boundaries (the free boundary-value problem /3/). despite the natural 
origin of SPs, there is no general proof that they are well-posed; in fact, analytical methods 
for solving them have not been developed. 

1. We consider a mechanical system consisting of a homogeneous, infinite string of 
linear density p, under tension u, and a bead of mass m threaded on the string. We shall 
assume that in its rest state the string is straight and coincides with the x axis; it is 
capable of performing small transverse vibrations in the xu plane, while the bead can move 
without friction along the string. Given the initial configuration and the initial velocity 
of the system, it is required to determine its motion during the time interval 0 d t(+oo. 

Thus, the vibrations of the string are described by a certain function u (& 0, --m < 
x<+c=,t>;-, and the motion of the bead is described by a vector-valued function with 
components x (t), q (t), t>O, where u (x (t), 1) = q (t), t & 0. It is assumed that x (t)E C2(t >O), 
q (t) E c3 (t >-- O), and moreover 1 x’ (t) 1 < a = 1/a, t > 0, so that the curve y: x = x(t), t>O, 
is a timelike curve /4/ in that zt plane relative to the homogeneous wave equation u,*= a2uxf. 
lying (with the exception of its enpoint (x,,, 0), x0 = x(O)) inside the future light cone I? = 

((I, 0: 15 - &I I > at, t > 01. As to the function u (5, t), it is assumed that u (& 0 E 
c(--00GI<+m,t~o), and in fact u (z, t) E C2 (-CO ( I ( $00. t 2 0), except for the points 
on the curve v and on the characteristics passing through (x0,0), where the partial deriva- 
tives of u (J, t) may have discontinuities of the first kind. Under these conditions we shall 
say that x(t), q(t), U(X, t) are admissible functions. 

Relying on previously obtained results /l/, we arrive at the following SP for the triple 
of admissible functions x(t), q(t) and u (I, t) describing the motion of the mechanical 
system in question: 

(1.1) 

q” = p (a’ - x”) [u,l (1.3) 

2rnX" = --p (a' - x.2) [u,Z] (1.4) 

n (x (0. t) = n (t) (1.5) 

x (0) = 501 x'(0) = PO, q (0) = ui), q’ (0) = q. (1.6) 

where the brackets denote the jump of the function in question across the curve y in the 
direction of the positive x axis, evaluated at the point (x(t), t). The initial data of the 
problem are assumed to satisfy the following conditions: 

2. We will find the conditions which guarantee the existence and uniqueness of an 
admissible global solution of the SP (l-1)-(1.6) and describe procedure for determining 
it. 

Let us assume that some admissible global solution x(t), q (t), u (5, t) of the SP (l.l)-(1.6) 
exists. Then the function u(2.t) is found among the admissible global solutions of the 
initial-value problem (l.l)-(1.3) for the one-dimensional wave equation (augmented by a jump 
condition) which satisfy conditions (1.4) and (1.5). Let us assume that an admissible global 
solution u (XV t) of problem (l.l)-(1.3) exists. to negative values t(O 
by defining it there as zero, i.e., setting 

Extend u.(x, t) 
u (Z, t) = 0 0) u (5, t), where e(t) is the Heaviside 

unit function and go over to the appropriate generalized function. Using the relationship 
between the generalized and classical derivatives of U(X, t), with due allowance for the 
initial conditions (1.2) and jump condition (1.3), we infer that an admissible global solution 
u(5, t) of problem (l.l)-(1.3), extended as zero to t<0, may be found among those 
generalized solutions of the one-dimensional wave equation 
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u,, = a*u,, + G b, 4 

G (~3 $1 = --mp-‘q” 0) 6 (x - x (4) + ‘p (4 6’ 0) + 9 (I) 6 (t) 

which are admissible functions for t > 0. As is well-known /4/, a generalized solution 
u (5, t) of the one-dimensional wave equations exists, is unique and can be expressed as a 
wave potential. We have 

U (5, t) = E (z, t) * G (z, t), E (5, t) = (ZU)-~ 0 (t) 0 (at - 15 1 ) 

where E(s,t) is a fundamental solution of the one-dimensional wave operator and the asterisk 
denotes convolution of functions of x, t. For t>o the solution takes the following form: 

q (I, t), --<x<--_t+x, 
Y” (x, t) 

u(51ty= Y-(S,t) I --t+%<s,<x(t) 
x(t)<<<at+~o 

(2.1) 

@* (5, t), at+r,Qz<+ca 

(~k(5,t)=~-(Pt(Z-ut)+~-cp,(s+at) igyls,(T)dT, k=l,Z 
& f 

Y* (5, t) = .%A) - srl’ (“’ (t 3: G)) + F, (t - +-) + 

F*(t+$), s=+ 

FdE)=$cp,(-uE)+&T *J.1(7)d7, E E [-Ma, + 33) 
:& 

Fa (5) = + ‘~2 (4) + & 4 $2 (z) dz, SE[%l% + m) 
.v* 

where B'(E), E EZ [~,/a, +m) and I?- (8, 5 E l--z&, +-) are the inverses of the functions 
cc+ (t) = t + x (t)la, a- (t) = t - x (t)la, t E [O, +a~), respectively. 

Clearly, u(5,2) is an admissible function. Thus an admissible global solution of 
problem (l.l)-(1.3) exists, is unique and is given by formula (2.1). 

Thus, if the triple of admissible functions x(t),q (t),u(z,t) is a global solution of 
the SP (l.l)-(1.6), then u(.z,t) is given by formula (2.1) and satisfies conditions (1.4), 
(1.5). Hence it follows that the pair of functions x(t),q(t) which are the other elements 
of the triple may be found among the admissible global solutions of the following initial- 
value problem for a canonical system of ordinary second-order differential equations: 

x" = -_[s (a2 - XV' [rl' - f' 0, X, x.)1 [Vl'x' + a/- (t, x, x.)1 

q” = -s-l [q’ - f’ (t, x, x’)J 

x (0) = % x’ (0) = PO? q (0) = %l rl’ (0) = qo 

(f* (t, x> x7 = (1 - x’ ia) F,’ (t - x la) F (1 + ~‘/a) F,’ (t + X/U)) 

(2.2) 

Conversely, if the pair of functions x(t), q(t) is an admissible global solution of 
problem (2.2), then the triple x(t), q(t), u(x,~), where u (z,t) is given by (2.1), is an 
admissible global solution of the SP (l.l)-(1.61, which can be verified directly. 

To obtain conditions guaranteeing the existence and uniqueness of an admissible global 
solution of problem (2.2), one uses some suitable a priori estimate of its admissible local 
solutions. Assume that the derivatives F,’ and F,’ are square-integrable over the intervals 
[--I~ /a, i-m), Iz,l4, +w), respectively. The law of conservation of energy for our mechanical 
system, formulated in terms of formulae (2.11, implies that if there exists an admissible 
local solution x(t),q(t) of problem (2.2) which is defined in some interval [0, T], then it 
satisfies the "energy inequality" 

x’” 0) + q-a (4 =G VfJ2, t E [O, Tl (2.3) 

VP =(pL?+ qoz + f $ F1"(E)dE + +zIaFi'([)d&y = const>O (2.4) 
-r( (L 
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Inequality (2.3) yields an a priori estimate for admissible local solutions x(t), q(t) 
of problem (2.2) which are defined for 0 <t< T, namely: 

1 x’ (t) I< v,, I x(t) - 20 I < VA Ill’ (t) I G VW I rl (t) - [(cl I4 Vd (2.5) 

The quantity V,of formula (2.4) will be called the defining parameter of the SP (l.l)- 
(1.6). 

Lemma. If the defining parameter V,of the SP (l.l)-(1.6) satisfies the condition 

v, < a (2.6) 

then problem (2.2) corresponding to this SP has an admissible global solution, which is more- 
over unique. 

Indeed, let T be an arbitrary positive number. Define a - V, = 2d and, in the extended 
phase space (t,X,~‘,q,q’), consider a parallelepiped II: 04 t < T, Ix - z. I< (V, + d) T,I x’ 1 < 

V, + 4 111 - ~0 I< (V, + d) I', In' I< V, + d, in which the conditions of the local existence 
and uniqueness theorem for the initial-value problem are satisfied. By the continuation 
theorem /5/, the local solution, which is obviously admissible, may be continued up to the 
boundary lI. It follows from the a priori estimate (2.5) that the solution can reach only 
the boundary t = T. Thus an admissible local solution can be continued to the right up to 
any t=T>O, and hence it is unrestricted in that direction. Since the continuation is 
unique, our assertion is proved. 

Let x(t), 11 (t) be an admissible global solution of problem (2.2). Then q(t) is an 
admissible global solution of a second-order ordinary differential equation (the second 
equation of (2.2) on the assumption that x(t) is a given function) satisfying the initialcon- 
ditions r(O) = nO, n'(0) = qO. This equation is readily integrated in quadratures, since it has 
a first integral which is a first-order linear differential equation. We have 

Consequently, x(t) is an admissible global solution of the following initial-value 
problem for an integrodifferential equation 

x" = n" (t) (a2 - x*y [q’ (t) x’ + af- (t, x> x.)1 (2.8) 

x(O).= .%I1 x' (0) = PO 

where n(t) is given by (2.7). If condition (2.6) is satisfied, this problem has an admiss- 
ible global solution, which is moreover unique. 

We have thus established the following assertion: If the defining parameter V, of the SP 
(l.l)-(1.6) satisfies condition (2.6), then a unique admissible global solution; x (t),n(t), u (5, 
t)of the problem exists; the function x.(t) is an admissible global solution of problem (2.8), 
and 17 0) is given by formula (2.7) and ~r(x, 1) by formula (2.1). 

3. ExqvZe. Let us consider a bead of mass m moving along an infinite vibrating homo- 
geneous string, set in motion at time t= 0 by a momentum mr, with components mp,, mg, 
communicated to the bead, on the assumption that Iv,,I<a. 

To determine the vector-valued function with components x (t), rl (t) and the function u (z, t), 
describing the motion of the bead and the string, respectively, we have a SP with initial 
data 

U (z, 0) = 0, U, (z, 0) = 0, x (0) = IO, x' (0) = PO. tl (0) = 0, 11' (0) = Q0 

characterized by a defining parameter VO:,= iv0 I<~, 
The function tl (t) is given by 

n (t)= sqO(i - ,+a), s = + , t>o (3.1) 

and x(t) is an admissible global solution of the following Cauchy problem for a second-order 
ordinary differential equation: 

s(,$ - X'P) x" = -l$e-z~'~x-; x (0) = 50. x‘ (0) = p0 (3.2) 

If PO = o, then obviously x(t) = x0, t > 0; if q0 = 0, then x (t) = pot+- Q,- t > 0 (in which 
case q (t) = 0, t > 0). 

Now let PO + 0, qa #o. If Po > o, then x’ (t) > 0, X” (t) < 0, t in- 0, so that x'(t) decreases 
monotonically from p0 (at t= 0) to p+ (at t= +w), where :p+ is the root of the equation 

h (p)s PO’ - a'ln po= + qo= -p= + a= In p’ = 0 (3.3) 

in the interval O<p< ‘_ If Po<o, then x’ (4 < 0, x” (t) > 0, t b 0, so that x' (t) increases 
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monotonically from pa (at t-0) to p- (at t- +cu), where P_ is the root of Eq.(3.3) 
in the interval pO<p(u. The function 5= ~(1) is found in parametric form (with parameter 
p) : 

(3.4) 

where pu > P > P+ (if h>o) and p. d P < P- (if pO < 0). 
The function u (2, t), t > 0, is given by 

1 

0, --w<z\<--al t30 

u (J , I) =~ II(B' (' + J/U)), -at -7 Jo < 3 c, x (I) 
q (B- (t -r/a)), x (‘) < 1 < nt -; IO 

0, atflo<x<$m 

where '1 is given by formula (3.1) and B+, fi- are the inverses 
Y. (t)ia, a- (t) = t - x (q/a, t > 0, respectively. 

(3.5) 

of the functions a+ (1) = 1 + 

As follows from our analysis, in accelerated motion the bead will continuously lose 
energy; in uniform motion, no energy is lost. We note that similar effects due . to the 
radiating reaction of a moving lumped factor (braking by the radiation), are observed in other 
interactive processes (e.g., interaction of a charged particle with its own electromagnetic 
field /6/). 

4. Remarks. 1. A similar method may be used to solve SPs concerning the vibrations of 
an infinite string loaded with several moving point masses which do not collide while in 
motion. Applying the method of reflections, one can also obtain solutions to SPs concerning 
the vibrations of semi-infinite and even bounded strings loaded with one or several moving 
point masses which do not collide with one another or with the end of the string while in 
motion. 

2. The SP (l.l)-(1.6) is essentially a mixed Cauchy problem with free boundary /7/ for 
the one-dimensional wave equation. The method of solution proposed in this paper, which is 
based on the idea of isolating different motions in the system, may be extended to SPs arising 
from other equations of hyperbolic type with constant coefficients, since for such equations 
a solution of the generalized Cauchy problem exists, is unique and can be represented as a 
convolution of a fundamental solution (with support contained ina certain convex cone) and 
a source /8/. 
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